Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.578
Filtrar
1.
Biomed Environ Sci ; 37(2): 228-232, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582987

RESUMO

As a reducing salt, sodium sulfite could deprive oxygen in solution, which could mimic hypoxic stress in Caenorhabditis elegans. In this study, the wild-type Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. We also analyzed the growth curves of mutant strains (for arcA/B, soxR/S, fnr, and oxyR) related to E. coli hypoxic pathways to reveal roles of the related genes during hypoxia. The ultrastructure of hypoxia-inhibited bacteria were also observed using transmission electron microscopy. Sodium sulfite could maintain hypoxic condition of bacterial culture for 8 h with concentrations over 40 mmol/L. Complete ultrastructure of the bacteria indicated sodium sulfite did inhibit bacterial growth and division. Among the hypoxia genes, fnr and arcB played key roles in sodium sulfite-induced hypoxia. This study showed that sodium sulfite could be used as a novel hypoxia revulsant for bacterial cultures.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Sulfitos , Humanos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Hipóxia , Regulação Bacteriana da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-38573823

RESUMO

Escherichia coli were engineered to selectively adsorb and recover lithium from the environment by employing a bacterial cell surface display strategy. Lithium binding peptide (LBP1) was integrated into the Escherichia coli membrane protein OmpC. The effect of environmental conditions on the adsorption of lithium by a recombinant strain was evaluated, and lithium particles on the cellular surface were analyzed by FE-SEM and XRD. To elevate the lithium adsorption, dimeric, trimeric, and tetrameric repeats of the LBP1 peptide were constructed and displayed on the surface of E. coli. The constructed recombinant E. coli displaying the LBP1 trimer was applied to real industrial lithium battery wastewater to recover lithium.


Assuntos
Escherichia coli , Lítio , Porinas , Escherichia coli/genética , Escherichia coli/metabolismo , Adsorção , Resíduos Industriais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Águas Residuárias/microbiologia , Fontes de Energia Elétrica , Técnicas de Visualização da Superfície Celular , Proteínas Recombinantes/genética
3.
Sci Rep ; 14(1): 7278, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538674

RESUMO

Brucella, a gram-negative intracellular bacterium, causing Brucellosis, a zoonotic disease with a range of clinical manifestations, from asymptomatic to fever, fatigue, loss of appetite, joint and muscle pain, and back pain, severe patients have developed serious diseases affecting various organs. The mRNA vaccine is an innovative type of vaccine that is anticipated to supplant traditional vaccines. It is widely utilized for preventing viral infections and for tumor immunotherapy. However, research regarding its effectiveness in preventing bacterial infections is limited. In this study, we analyzed the epitopes of two proteins of brucella, the TonB-dependent outer membrane receptor BtuB and the LPS assembly protein LptD, which is involved in nutrient transport and LPS synthesis in Brucella. In order to effectively stimulate cellular and humoral immunity, we utilize a range of immunoinformatics tools such as VaxiJen, AllergenFPv.1.0 and SignalP 5.0 to design proteins. Finally, five cytotoxic T lymphocyte (CTL) cell epitopes, ten helper T lymphocyte (HTL) cell epitopes, and eight B cell epitopes were selected to construct the vaccine. Computer simulations are also used to verify the immune response of the vaccine. The codon optimization, in silico cloning showed that the vaccine can efficiently transcript and translate in E. coli. The secondary structure of mRNA vaccines and the secondary and tertiary structures of vaccine peptides were predicted and then docked with TLR-4. Finally, the stability of the developed vaccine was confirmed through molecular dynamics simulation. These analyses showed that the design the multi-epitope mRNA vaccine could potentially target extracellular protein of prevalent Brucella, which provided novel strategies for developing the vaccine.


Assuntos
Brucella , Proteínas de Escherichia coli , Vacinas , Humanos , Brucella/genética , Vacinas de mRNA , Escherichia coli , Lipopolissacarídeos , Epitopos de Linfócito T , Epitopos de Linfócito B , Linfócitos T Citotóxicos , Simulação de Dinâmica Molecular , Vacinas de Subunidades , Biologia Computacional , Simulação de Acoplamento Molecular , Proteínas da Membrana Bacteriana Externa/genética
4.
EMBO Rep ; 25(4): 1711-1720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467907

RESUMO

The assembly of ß-barrel proteins into the bacterial outer membrane is an essential process enabling the colonization of new environmental niches. The TAM was discovered as a module of the ß-barrel protein assembly machinery; it is a heterodimeric complex composed of an outer membrane protein (TamA) bound to an inner membrane protein (TamB). The TAM spans the periplasm, providing a scaffold through the peptidoglycan layer and catalyzing the translocation and assembly of ß-barrel proteins into the outer membrane. Recently, studies on another membrane protein (YhdP) have suggested that TamB might play a role in phospholipid transport to the outer membrane. Here we review and re-evaluate the literature covering the experimental studies on the TAM over the past decade, to reconcile what appear to be conflicting claims on the function of the TAM.


Assuntos
Proteínas de Escherichia coli , Transporte Biológico , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
5.
mSphere ; 9(3): e0072923, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38440985

RESUMO

In December 2022, an alert was published in the UK and other European countries reporting an unusual increase in the incidence of Streptococcus pyogenes infections. Our aim was to describe the clinical, microbiological, and molecular characteristics of group A Streptococcus invasive infections (iGAS) in children prospectively recruited in Spain (September 2022-March 2023), and compare invasive strains with strains causing mild infections. One hundred thirty isolates of S. pyogenes causing infection (102 iGAS and 28 mild infections) were included in the microbiological study: emm typing, antimicrobial susceptibility testing, and sequencing for core genome multilocus sequence typing (cgMLST), resistome, and virulome analysis. Clinical data were available from 93 cases and 21 controls. Pneumonia was the most frequent clinical syndrome (41/93; 44.1%), followed by deep tissue abscesses (23/93; 24.7%), and osteoarticular infections (11/93; 11.8%). Forty-six of 93 cases (49.5%) required admission to the pediatric intensive care unit. iGAS isolates mainly belonged to emm1 and emm12; emm12 predominated in 2022 but was surpassed by emm1 in 2023. Spread of M1UK sublineage (28/64 M1 isolates) was communicated for the first time in Spain, but it did not replace the still predominant sublineage M1global (36/64). Furthermore, a difference in emm types compared with the mild cases was observed with predominance of emm1, but also important representativeness of emm12 and emm89 isolates. Pneumonia, the most frequent and severe iGAS diagnosed, was associated with the speA gene, while the ssa superantigen was associated with milder cases. iGAS isolates were mainly susceptible to antimicrobials. cgMLST showed five major clusters: ST28-ST1357/emm1, ST36-ST425/emm12, ST242/emm12.37, ST39/emm4, and ST101-ST1295/emm89 isolates. IMPORTANCE: Group A Streptococcus (GAS) is a common bacterial pathogen in the pediatric population. In the last months of 2022, an unusual increase in GAS infections was detected in various countries. Certain strains were overrepresented, although the cause of this raise is not clear. In Spain, a significant increase in mild and severe cases was also observed; this study evaluates the clinical characteristics and the strains involved in both scenarios. Our study showed that the increase in incidence did not correlate with an increase in resistance or with an emm types shift. However, there seemed to be a rise in severity, partly related to a greater rate of pneumonia cases. These findings suggest a general increase in iGAS that highlights the need for surveillance. The introduction of whole genome sequencing in the diagnosis and surveillance of iGAS may improve the understanding of antibiotic resistance, virulence, and clones, facilitating its control and personalized treatment.


Assuntos
Pneumonia , Infecções Estreptocócicas , Criança , Humanos , Streptococcus pyogenes , Espanha/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia
6.
Methods Mol Biol ; 2778: 367-381, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478289

RESUMO

Biogenesis of the outer membrane (OM) of Gram-negative bacteria involves two processes essential for growth, that is, the insertion of ß-barrel outer membrane proteins (OMPs) by the Bam complex and the assembly of the LPS-containing outer leaflet of the OM by the LptD/E complex from the Lpt pathway. These processes have only recently gained attention as targets for antimicrobial drugs. Our laboratory has developed a simple screening tool to identify compounds that target processes that disrupt the biogenesis of the cell envelope, among which the activity of the Bam complex. The tool is based on the observation that such a disruption triggers cell envelope stress response systems, such as the σE, Rcs, and Cpx responses. In essence, specific stress-responsive promoters are fused to a gene encoding a bright fluorescent protein to serve as a panel of easy-to-monitor stress reporter plasmids. Using these plasmids, compounds triggering these stress systems and, therefore, putatively disrupting the biogenesis of the cell envelope can be identified by the nature and kinetics of the induced stress responses. We describe here the use of the stress reporter plasmids in high-throughput phenotypic screening using multi-well plates.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo
7.
mSphere ; 9(2): e0067723, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38305166

RESUMO

The outer membrane (OM) is an essential structure of Gram-negative bacteria that provides mechanical strength and protection from large and/or hydrophobic toxic molecules, including many antibiotics. The OM is composed of glycerophospholipids (GPLs) and lipopolysaccharide (LPS) in the inner and outer leaflets, respectively, and hosts integral ß-barrel proteins and lipoproteins. While the systems responsible for translocation and insertion of LPS and OM proteins have been elucidated, the mechanism(s) mediating transport of GPLs from the inner membrane to the OM has remained elusive for decades. Very recently, studies performed in Escherichia coli proposed a role in this process for AsmA-like proteins that are predicted to share structural features with eukaryotic lipid transporters. In this study, we provide the first systematic investigation of AsmA-like proteins in a bacterium other than E. coli, the opportunistic human pathogen Pseudomonas aeruginosa. Bioinformatic analyses revealed that P. aeruginosa possesses seven AsmA-like proteins. Deletion of asmA-like genes in many different combinations, coupled with conditional mutagenesis, revealed that four AsmA-like proteins are redundantly essential for growth and OM integrity in P. aeruginosa, including a novel AsmA-like protein (PA4735) that is not present in E. coli. Cells depleted of AsmA-like proteins showed severe defects in the OM permeability barrier that were partially rescued by lowering the synthesis or transport of LPS. Since fine balancing of GPL and LPS levels is crucial for OM integrity, this evidence supports the role of AsmA-like proteins in GPL transport toward the OM. IMPORTANCE: Given the importance of the outer membrane (OM) for viability and antibiotic resistance in Gram-negative bacteria, in the last decades, several studies have focused on the characterization of the systems involved in OM biogenesis, which have also been explored as targets for antibacterial drug development. However, the mechanism mediating translocation of glycerophospholipids (GPLs) to the OM remained unknown until recent studies provided evidence that AsmA-like proteins could be responsible for this process. Here, we demonstrate for the first time that AsmA-like proteins are essential and redundant for growth and OM integrity in a Gram-negative bacterium other than the model organism Escherichia coli and demonstrate that the human pathogen Pseudomonas aeruginosa has an additional essential AsmA-like protein that is not present in E. coli, thus expanding the range of AsmA-like proteins that play key functions in Gram-negative bacteria.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Antibacterianos/metabolismo , Glicerofosfolipídeos/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339099

RESUMO

A cell's ability to secrete extracellular vesicles (EVs) for communication is present in all three domains of life. Notably, Gram-negative bacteria produce a specific type of EVs called outer membrane vesicles (OMVs). We previously observed the presence of OMVs in human blood, which could represent a means of communication from the microbiota to the host. Here, in order to investigate the possible translocation of OMVs from the intestine to other organs, the mouse was used as an animal model after OMVs administration. To achieve this, we first optimized the signal of OMVs containing the fluorescent protein miRFP713 associated with the outer membrane anchoring peptide OmpA by adding biliverdin, a fluorescence cofactor, to the cultures. The miRFP713-expressing OMVs produced in E. coli REL606 strain were then characterized according to their diameter and protein composition. Native- and miRFP713-expressing OMVs were found to produce homogenous populations of vesicles. Finally, in vivo and ex vivo fluorescence imaging was used to monitor the distribution of miRFP713-OMVs in mice in various organs whether by intravenous injection or oral gavage. The relative stability of the fluorescence signals up to 3 days post-injection/gavage paves the way to future studies investigating the OMV-based communication established between the different microbiotas and their host.


Assuntos
Escherichia coli , Vesículas Extracelulares , Animais , Camundongos , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Distribuição Tecidual , Vesículas Extracelulares/metabolismo , Intestinos , Bactérias Gram-Negativas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
9.
J Microbiol Immunol Infect ; 57(2): 269-277, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38278671

RESUMO

BACKGROUND: A new sublineage of emm1 group A Streptococcus (GAS), M1UK, has emerged in Europe, North America, and Australia. Notably, a significant portion of emm1 isolates in Asia, particularly in Hong Kong and mainland China, acquired scarlet fever-associated prophages following the 2011 Hong Kong scarlet fever outbreak. However, the presence of the M1UK sublineage has not yet been detected in Asia. METHODS: This study included 181 GAS isolates (2011-2021). The emm type of these isolates were determined, and 21 emm1 isolates from blood or pleural fluid (2011-2021) and 10 emm1 isolates from throat swabs (2016-2018) underwent analysis. The presence of the scarlet fever-associated prophages and the specific single nucleotide polymorphisms of the M1UK clone were determined by polymerase chain reaction and the genome sequencing. RESULTS: The M1UK lineage strains from throat swab and blood samples were identified. One of the M1UK strain in Taiwan carried the scarlet fever-associated prophage and therefore acquired the ssa, speC, and spd1 toxin repertoire. Nonetheless, the increase of M1UK was not observed until 2021, and there was a reduction in the diversity of emm types in 2020-2021, possibly due to the COVID-19 pandemic restriction policies in Taiwan. CONCLUSIONS: Our results suggested that the M1UK lineage clone has introduced in Taiwan. In Taiwan, the COVID-19 restrictions were officially released in March 2023; therefore, it would be crucial to continuously monitor the M1UK expansion and its related diseases in the post COVID-19 era.


Assuntos
COVID-19 , Escarlatina , Infecções Estreptocócicas , Humanos , Escarlatina/epidemiologia , Taiwan/epidemiologia , Pandemias , Proteínas da Membrana Bacteriana Externa/genética , Streptococcus pyogenes/genética , COVID-19/epidemiologia , Reino Unido , Antígenos de Bactérias/genética , Infecções Estreptocócicas/epidemiologia
10.
mBio ; 15(2): e0303923, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193657

RESUMO

The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Bactérias Gram-Negativas/metabolismo , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas Periplásmicas de Ligação/genética , Proteínas Periplásmicas de Ligação/metabolismo
11.
Elife ; 122024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226797

RESUMO

Outer membrane proteins (OMPs) are essential components of the outer membrane of Gram-negative bacteria. In terms of protein targeting and assembly, the current dogma holds that a 'ß-signal' imprinted in the final ß-strand of the OMP engages the ß-barrel assembly machinery (BAM) complex to initiate membrane insertion and assembly of the OMP into the outer membrane. Here, we revealed an additional rule that signals equivalent to the ß-signal are repeated in other, internal ß-strands within bacterial OMPs, by peptidomimetic and mutational analysis. The internal signal is needed to promote the efficiency of the assembly reaction of these OMPs. BamD, an essential subunit of the BAM complex, recognizes the internal signal and the ß-signal, arranging several ß-strands and partial folding for rapid OMP assembly. The internal signal-BamD ordering system is not essential for bacterial viability but is necessary to retain the integrity of the outer membrane against antibiotics and other environmental insults.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Membranas/metabolismo , Conformação Proteica em Folha beta , Dobramento de Proteína
12.
Food Microbiol ; 119: 104455, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225055

RESUMO

Cronobacter (seven species) can survive in dry powdered infant formula for a long time, but the thorough molecular mechanism of resistance to desiccation remains elusive. Here we examine the regulation mechanism of Cronobacter's tolerance to desiccation by the typical two-component system (TCS) EnvZ/OmpR. When exposed to desiccation conditions, Cronobacter showed higher survival than other pathogens, as well as significantly up-regulated expression of ompR and otsAB genes with markedly decreased survival of their mutants, suggesting their relationship with desiccation tolerance. OmpR directly binds to the promoter of trehalose biosynthesis operon otsBA, significantly enhancing their expression, and boosting the trehalose levels. The ompR-deletion in other six species further confirmed its positive regulation in desiccation tolerance. Our data present a hypothesis that EnvZ/OmpR increases intracellular trehalose levels against damage to the cells, which prompts Cronobacter to survive in desiccation conditions. This study reveals a universal molecular mechanism for desiccation resistance in Cronobacter species.


Assuntos
Cronobacter , Humanos , Lactente , Cronobacter/genética , Trealose , Dessecação , Regiões Promotoras Genéticas , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo
13.
Methods Mol Biol ; 2741: 11-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217646

RESUMO

Outer membrane vesicles (OMVs), produced by Gram negative-bacteria and sRNAs, are key players in cell-to-cell communication and interactions of bacteria with the environment. OMVs act as information carriers and encapsulate various molecules such as proteins, lipids, metabolites, and RNAs. OMVs and sRNAs play a broad range of functions from pathogenesis to stress resistance, to biofilm formation and both mediate interkingdom signaling. Various studies indicate that there is a mechanism of intercellular communication mediated by OMV-derived bacterial RNAs that is conserved among certain bacterial species. Here we describe methods for the extraction and purification of vesicles produced by Gram-negative bacteria, such as Pseudomonas brassicacearum and Escherichia coli, and address methods for the extraction of OMVs-derived sRNA and techniques for the analysis of sRNAs.


Assuntos
Vesículas Extracelulares , Bactérias Gram-Negativas , Bactérias Gram-Negativas/genética , Escherichia coli/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Vesículas Extracelulares/metabolismo
14.
Methods Mol Biol ; 2742: 37-45, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165613

RESUMO

Bacterial outer membrane vesicles (OMVs) are spherical membrane constructs shed by gram-negative bacteria. OMVs produced by the Lyme disease pathogen Borrelia burgdorferi have been identified to contain such virulence factors as OspA, OspB, OspC, and genetic material. However, the function and possible pathogenicity of borrelial OMVs are still undetermined. Therefore, further research on borrelial OMVs is required, and for that a standard method for OMV purification is necessary. Here we describe a successful and reproducible purification of borrelial outer membrane vesicles using concentration, filtration, and ultracentrifugation steps.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Doença de Lyme , Humanos , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Doença de Lyme/microbiologia , Vacinas Bacterianas , Antígenos de Superfície/genética
15.
Nature ; 625(7995): 572-577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172635

RESUMO

Gram-negative bacteria are extraordinarily difficult to kill because their cytoplasmic membrane is surrounded by an outer membrane that blocks the entry of most antibiotics. The impenetrable nature of the outer membrane is due to the presence of a large, amphipathic glycolipid called lipopolysaccharide (LPS) in its outer leaflet1. Assembly of the outer membrane requires transport of LPS across a protein bridge that spans from the cytoplasmic membrane to the cell surface. Maintaining outer membrane integrity is essential for bacterial cell viability, and its disruption can increase susceptibility to other antibiotics2-6. Thus, inhibitors of the seven lipopolysaccharide transport (Lpt) proteins that form this transenvelope transporter have long been sought. A new class of antibiotics that targets the LPS transport machine in Acinetobacter was recently identified. Here, using structural, biochemical and genetic approaches, we show that these antibiotics trap a substrate-bound conformation of the LPS transporter that stalls this machine. The inhibitors accomplish this by recognizing a composite binding site made up of both the Lpt transporter and its LPS substrate. Collectively, our findings identify an unusual mechanism of lipid transport inhibition, reveal a druggable conformation of the Lpt transporter and provide the foundation for extending this class of antibiotics to other Gram-negative pathogens.


Assuntos
Antibacterianos , Proteínas da Membrana Bacteriana Externa , Lipopolissacarídeos , Proteínas de Membrana Transportadoras , Acinetobacter/química , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Sítios de Ligação/efeitos dos fármacos , Transporte Biológico/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Viabilidade Microbiana , Conformação Proteica/efeitos dos fármacos , Especificidade por Substrato
16.
Eur J Clin Microbiol Infect Dis ; 43(2): 233-241, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010594

RESUMO

PURPOSE: Streptococcus pyogenes (mostly termed group A Streptococcus - GAS) is the most important bacterial causative of pharyngitis. However, epidemiology of GAS pharyngitis is not widely established. This study describes GAS pharyngitis cases and emm-type distribution in a prospective study covering over 2 years in two Hospital Districts in Finland. METHODS: A prospective, systematic collection of GAS pharyngitis isolates was conducted between March 2018 and December 2020 in two large Hospital Districts in Finland. Patient characteristics (age, gender) were included if available. All GAS isolates collected were emm typed. RESULTS: Altogether 1320 GAS pharyngitis strains were collected, 904 in the Hospital District 1 (HD1) and 416 in Hospital District 2 (HD2). In HD1, age and gender data were available. Females were overrepresented (58% of all cases). In addition, the age and gender distributions were noted to be significantly different (p < 0.0001) with females having a more uniform distribution until age of 40. emm28 was common among the age group of 20-29-year-olds and emm89 in children under 10 years of age, respectively. In HD1, most of the isolates were collected during winter and autumn months. Significant differences by season in the frequency of emm12, emm89, emm75 and group of "others" were observed. CONCLUSION: Age distribution among GAS pharyngitis cases was significantly different between genders (p < 0.0001). In addition, age group specific and seasonal variations in emm GAS types causing the disease were observed. These findings warrant further investigation, especially for understanding population-based spread of GAS even in more detail.


Assuntos
Faringite , Infecções Estreptocócicas , Criança , Humanos , Feminino , Masculino , Adulto Jovem , Adulto , Streptococcus pyogenes , Estudos Prospectivos , Finlândia/epidemiologia , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/microbiologia , Proteínas de Transporte/genética , Faringite/epidemiologia , Faringite/microbiologia , Genótipo
17.
mSystems ; 9(1): e0108723, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38078774

RESUMO

Borrelia burgdorferi, the pathogen of Lyme disease, differentially produces many outer surface proteins (Osp), some of which represent the most abundant membrane proteins, such as OspA, OspB, and OspC. In cultured bacteria, these proteins can account for a substantial fraction of the total cellular or membrane proteins, posing challenges to the identification and analysis of non-abundant proteins, which could serve as novel pathogen detection markers or as vaccine candidates. Herein, we introduced serial mutations to remove these abundant Osps and generated a B. burgdorferi mutant deficient in OspA, OspB, and OspC in an infectious 297-isolate background, designated as OspABC- mutant. Compared to parental isolate, the mutant did not reflect growth defects in the cultured medium but showed differential mRNA expression of representative tested genes, in addition to gross changes in cellular and membrane protein profiles. The analysis of differentially detectable protein contents of the OspABC- mutant, as compared to the wild type, by two-dimensional gel electrophoresis followed by liquid chromatography-mass spectrometry, identified several spirochete proteins that are dominated by proteins of unknown functions, as well as membrane transporters, chaperons, and metabolic enzymes. We produced recombinant forms of two of these represented proteins, BBA34 and BB0238, and showed that these proteins are detectable during spirochete infection in the tick-borne murine model of Lyme borreliosis and thus serve as potential antigenic markers of the infection.IMPORTANCEThe present manuscript employed a systemic approach to identify non-abundant proteins in cultured Borrelia burgdorferi that are otherwise masked or hidden due to the overwhelming presence of abundant Osps like OspA, OspB, and OspC. As these Osps are either absent or transiently expressed in mammals, we performed a proof-of-concept study in which their removal allowed the analysis of otherwise less abundant antigens in OspABC-deficient mutants and identified several immunogenic proteins, including BBA34 and BB0238. These antigens could serve as novel vaccine candidates and/or genetic markers of Lyme borreliosis, promoting new research in the clinical diagnosis and prevention of Lyme disease.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Camundongos , Animais , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Lipoproteínas/genética , Vacinas Bacterianas/genética , Antígenos de Superfície/genética , Doença de Lyme/diagnóstico , Borrelia burgdorferi/genética , Mamíferos
18.
BioDrugs ; 38(1): 47-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37796436

RESUMO

Outer membrane vesicles (OMVs) are spontaneously released by many gram-negative bacteria during their growth and constitute an important virulence factor for bacteria, helping them to survive through harsh environmental conditions. Native OMVs, naturally-released from bacteria, are produced at a level too low for vaccine manufacturing, requiring chemical treatment (detergent-extracted) or genetic manipulation, resulting in generalized modules for membrane antigens (GMMAs). Over the years, the nature and properties of OMVs have made them a viable platform for vaccine development. There are a few licensed OMV vaccines mainly for the prevention of meningitis caused by Neisseria meningitidis serogroup B (MenB) and Haemophilus influenzae type b (Hib). There are several candidates in clinical development against other gram-negative organisms from which the OMVs are derived, but also against heterologous targets in which the OMVs are used as carriers (e.g. coronavirus disease 2019 [COVID-19]). The use of OMVs for targets other than those from which they are derived is a major advancement in OMV technology, improving its versatility by being able to deliver protein or polysaccharide antigens. Other advances include the range of genetic modifications that can be made to improve their safety, reduce reactogenicity, and increase immunogenicity and protective efficacy. However, significant challenges remain, such as identification of general tools for high-content surface expression of heterologous proteins on the OMV surface. Here, we outline the progress of OMV vaccines to date, particularly discussing licensed OMV-based vaccines and candidates in clinical development. Recent trends in preclinical research are described, mainly focused on genetic manipulation and chemical conjugation for the use of OMVs as carriers for heterologous protein and polysaccharide antigens. Remaining challenges with the use of OMVs and directions for future research are also discussed.


Assuntos
Proteínas da Membrana Bacteriana Externa , Vacinas , Humanos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/química , Polissacarídeos
19.
Lancet Microbe ; 5(2): e181-e193, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070538

RESUMO

The high strain diversity of Streptococcus pyogenes serves as a major obstacle to vaccine development against this leading global pathogen. We did a systematic review of studies in PubMed, MEDLINE, and Embase that reported the global distribution of S pyogenes emm-types and emm-clusters from Jan 1, 1990, to Feb 23, 2023. 212 datasets were included from 55 countries, encompassing 74 468 bacterial isolates belonging to 211 emm-types. Globally, an inverse correlation was observed between strain diversity and the UNDP Human Development Index (HDI; r=-0·72; p<0·0001), which remained consistent upon subanalysis by global region and site of infection. Greater strain diversity was associated with a lower HDI, suggesting the role of social determinants in diseases caused by S pyogenes. We used a population-weighted analysis to adjust for the disproportionate number of epidemiological studies from high-income countries and identified 15 key representative isolates as vaccine targets. Strong strain type associations were observed between the site of infection (invasive, skin, and throat) and several streptococcal lineages. In conclusion, the development of a truly global vaccine to reduce the immense burden of diseases caused by S pyogenes should consider the multidimensional diversity of the pathogen, including its social and environmental context, and not merely its geographical distribution.


Assuntos
Infecções Estreptocócicas , Vacinas , Humanos , Streptococcus pyogenes/genética , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/microbiologia , Antígenos de Bactérias , Proteínas da Membrana Bacteriana Externa/genética
20.
Appl Microbiol Biotechnol ; 108(1): 29, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159117

RESUMO

Small noncoding RNAs (sncRNAs) play important regulatory roles in bacterial physiological processes and host-pathogen interactions. Meanwhile, bacterial outer membrane vesicles (OMVs), as naturally secreted outer membrane structures, play a vital role in the interaction between bacteria and their living environment, including the host environment. However, most current studies focus on the biological functions of sncRNAs in bacteria or hosts, while neglecting the roles and regulatory mechanisms of the OMVs that encapsulate these sncRNAs. Therefore, this review aims to summarize the intracellular regulatory roles of bacterial sncRNAs in promoting pathogen survival by regulating virulence, modulating bacterial drug resistance, and regulating iron metabolism, and their extracellular regulatory function for influencing host immunity through host-pathogen interactions. Additionally, we introduce the key role played by OMVs, which serve as important cargoes in bacterial sncRNA-host interactions. We propose emerging pathways of sncRNA action to further discuss the mode of host-pathogen interactions, highlighting that the inhibition of sncRNA delivery by OMVs may prevent the occurrence of infection to some extent. Hence, this review lays the foundation for future prophylactic treatments against bacterial infections and strategies for addressing bacterial drug resistance. KEY POINTS: •sncRNAs have intracellular and extracellular regulatory functions in bacterial physiological processes and host-pathogen interactions. •OMVs are potential mediators between bacterial sncRNAs and host cells. •OMVs encapsulating sncRNAs have more potential biological functions.


Assuntos
Vesículas Extracelulares , Pequeno RNA não Traduzido , Pequeno RNA não Traduzido/genética , Proteínas da Membrana Bacteriana Externa/genética , Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Interações entre Hospedeiro e Microrganismos , Vesículas Extracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...